cdpg_anonkit.sanitisation

Classes

Module Contents

class cdpg_anonkit.sanitisation.SanitiseData
clip(min_value: float, max_value: float) pandas.Series

Clip (limit) the values in a Series to a specified range.

Parameters:
  • series (pd.Series) – The input Series to be clipped.

  • min_value (float) – The minimum value to clip to.

  • max_value (float) – The maximum value to clip to.

Returns:

The clipped Series.

Return type:

pd.Series

hash_values(salt: str = '') pandas.Series

Hash the values in a Series using the SHA-256 algorithm.

This can be used to pseudonymise values that need to be kept secret. The salt parameter can be used to add a common salt to all values. This can be useful if you want to combine the hashed values with other columns to create a unique identifier.

Parameters:
  • series (pd.Series) – The input Series to be hashed.

  • salt (str, optional) – The salt to add to all values before hashing. Defaults to an empty string.

Returns:

The hashed Series.

Return type:

pd.Series

suppress(threshold: int = 5, replacement: str | int | float | None = None) pandas.Series

Suppress all values in a Series that occur less than a given threshold.

Replace all values that occur less than the threshold with the replacement value.

Parameters:
  • series (pd.Series) – The input Series to be suppressed.

  • threshold (int, optional) – The minimum number of occurrences for a value to be kept. Defaults to 5.

  • replacement (Optional[Union[str, int, float]], optional) – The value to replace suppressed values with. Defaults to None, which means that the values will be replaced with NaN.

Returns:

The Series with suppressed values.

Return type:

pd.Series

sanitise_data(columns_to_sanitise: List[str], sanitisation_rules: Dict[str, Dict[str, str | float | int | List | Dict]], drop_na: bool = False) pandas.DataFrame

Sanitise a DataFrame by applying different methods to each column.

Parameters:
  • df (pd.DataFrame) – The input DataFrame to be sanitised.

  • columns_to_sanitise (List[str]) – The columns in the DataFrame to be sanitised.

  • sanitisation_rules (Dict[str, Dict[str, Union[str, float, int, List, Dict]]]) –

    A dictionary that maps each column in columns_to_sanitise to a dictionary that specifies the sanitisation method and parameters for that column. The dictionary should contain the following keys: * ‘method’: str, the sanitisation method to use * ‘params’: Dict[str, Union[str, float, int, List, Dict]], the parameters

    for the sanitisation method

  • drop_na (bool, optional) – If True, drop all rows in the DataFrame that have any NaN values in the columns specified in columns_to_sanitise. Defaults to False.

Returns:

The sanitised DataFrame.

Return type:

pd.DataFrame